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SUMMARY

The kinetics. of protein-immobilized ligand interactions during affinity elec-
trophoresis are of great importance for the practical applicability of the method and
for the interpretation of the results. Major theoretically predicted effects of the ki-
netics of (monovalent) protein—immobilized ligand complex formation and decay
reactions during affinity electrophoresis are (1) broadening of the protein zone and (2)
anomalies at the beginning of the experiment before steady-state conditions are
achieved. These phenomena are described quantitatively and experimental consequen-
ces are predicted. Experimental procedures for minimizing the adverse effects of slow
kinetics are suggested. Affinity electrophoresis can be used safely for the measurement
of the apparent dissociation constant of a protein-immobilized ligand complex (from
the values of the mobilities of the ligand-binding protein on affinity gels) if the lifetime
of the complex is much shorter than the total time of the electrophoretic experiment,
i.e., under the conditions normally used approximately 7,,, < 10 sec. Quantitative
analysis of the zone profile of the protein in the affinity gel can yield the kinetic
‘parameters (rate constants) of the protein—-immobilized ligand interaction. With very
stable complexes (lifetime longer than the duration of the electrophoretic experiment)
an alternative technique can be used for measurement of the dissociation constant,
i.e., electrophoretic separation of the complex-bound and free protein after establish-
ment of equilibrium. The equations derived are used for prediction of the behaviour
of several typical ligand-binding proteins (lectins, antibodies) with characteristic
equilibrium and rate constants of the complexation reaction with a ligand.

INTRODUCTION |

. ... Affinity electrophoresis (for a review, see ref. 1) can be used both for qualitative
purposes (such as the detection and identification of ligand-binding proteins, and the

- detection of impurities in preparations of such binding proteins) and for quantitative
evaluation of the strength of protein-ligand interactions. So far most quantitative
applications of afiinity electrophoresis (i.e., estimation of the dissociation constants
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of protein-ligand complexes) were based on very simple equations relating the mobil-
ity of a protein on an affinity gel to the dissociation constants of the protein-ligand
complexes, implicitly assuming a number of simplifying conditions. However, the
application of aiffinity electrophoresis for these quantitative purposes obviously re-
quires the development of a reliable theory of the technique quantitatively describing
the effects of various factors that affect the process of protein-ligand complex forma-
tion. The effects of a number of factors have been theoretically treated in two previ-
ous papers>>.

One of the sxmphfymg assumptions used for deriving the relatively simple
equations applicable for the evaluation of the dissociation constants of protein—
ligand complexes by affinity electrophoresis is that the rates of complex formation
and dissociation reactions are very high so that kinetic effects are negligible and the
situation in the protein zone moving through the affinity gel is very ciose to an equilib-
rium state. However, as affinity electrophoresis is principally a non-equilibrium
method, this assumption may not be always valid in practice. Therefore, it was of
interest to evaluate the effects of the kinetics of the complex formation reaction on the
results obtainable by this technique. The effects of kinetics were partially discussed (in
addition to several other factors) in a previous paper?, but in that study an over-
simplified model was used, the effects of kinetics on the distribution of protein mole-
cules (i.e., the width of the band) not being considered.

In this paper we present a fuller description of this problem. The results ob-
tained can be used to predict the kinetic limitations of the technique and to suggest
conditions under which the complicating kinetic effects can be eliminated; also, the
possibility of measuring rate constants by affinity electrophoresis is demonstrated.

MODEL USED

The characteristic features of the model used are as follows. The medium used
as an affinity gel is a highly porous, macroscopically homogeneous gel containing im-
mobilized ligand molecules (concentration ¢) covalently attached to the gel matrix.
The macromolecular gel-forming network has negligible volume so that there are no
restrictions to free diffusion of protein molecules within the gel; each point in the gel
is accessible tc a protein molecule. Alt immobilized ligands are chemically equivalent
and accessible tq interaction with the protein; thus, the effective concentration of the
immobilized ligand is identical with the total concentration c. The space distribution
of ligand molecules is random (statistical). The medium forms a homogeneous block
(e.g., a rod in a glass tube) which connects vertically two electrode vessels as usually
used in vertical disc electraphoresis apparatus. A single buffer is used throughout the
system (i.e., a continuous buffer system is employed). The sample is applied as a very
narrow zone at the top of the gel; the molar concentration of the protein (a) in the
sample is much lower than ¢ (@ <€ ¢). The protein molecule (with diffusion coefficient
D) possesses a single ligand-binding site. A potential gradient used is such that the
rate of electrophoretic movement of the protein in a control (non-interacting) gel is v.
Electroendosmosis of the gel is negligibly low and the temperature is constant.
Mathematical description of the model in the general case
" Let the protein molecule be free (uncomplexed at time ¢ = 0). After switching
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on the electric field it executes Brownian motion for a certain time with drift velocity ¢
in the direction of the line of force until a collision with an immobilized ligand occurs.
Now one of two events may eccus: either the molecule is intercepted by the ligand
with the result that an immohbile complexis formed and the molecule comes to rest; or
it may bounce off and continue drifting. The latter event may be repeated consecu-
tively several times until the first event recurs. However, as the lifetime of the (im-
mobile) complex is finite, the complex will decay after a certain time and the whole
process will start anew. Thus, the complex formation results in retardation of the
protein in an affinity gel compared with a control gel. Generally, we wish to find the
probability that the protein molecule will occur at a distance s from the start at time ¢
= T, i.e., to determine the time-dependent distribution of protein molecules through-
out the length of the gel under general conditions. Such a probability distribution
should yield the concentration profile of the protein zone at any time (¢f., Fig. 2). In
order to do so we have to start with some generally plausible assumptions that will
enable us to describe mathematically the fate of one randomly selected molecule.

Let &; be the waiting times between consecutive collisions, y; the lifetimes of
protein complexes that the molecule forms (i, f = 1, 2, ...) and w the probability that
a collision will be effective, i.e., will result in complex formation. We assume that &,
and yx; are mutually independent exponentially distributed random variables with
probability densities

fo @ =re™™
L= ye""} t>9 (1)

[It skould be noted that the frequently used half-life of the complex is equal to (In 2)/u
but for our purposes the parameter u is more convenient.] The instances of collision
without and with interception divide the interval of observation [0, 7] into sub-
intervals of motion and rest as shown in Fig. 1 where the intervals of motion of the
molecule are drawn with heavy lines.

The probability @ may be termed the effective cross-section for the complex
formation reaction and is assumed to be constant.

It is intuitively clear and can easily be shown by explicit argument that the
waiting times z; between two consecutive effective collisions are exponentially dis-
tributed with the probability density

Sy, (1) = oxe™™ 2)
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Fig. 1. Schematic representation of the fate of a protein molecule as a temporal sequence of collisions with
and without interception. Intervals of motion of the molecule are drawn with heavy lines. Full circle,
collision with interception; open circle, collision without interception; vertical bar, dissociation of the
complex.
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Using the language of stochastic processes, we can say that the fate of the protein
molecule is a simple time-dependent process* with two states (rest and motion) and
the transition intensities i = e@x and p corresponding to transitions motion — rest
and rest — motion, respectively. From the properties of the exporential distribution
it follows that for the mean and variance of waiting times the following relationships
hold (ref. 3, p. 8}: ’ )

(g =4t

I e
Gp=p"' ;  vary; =g :

var z; = ;_-z}

-2
Hence, e.g., Adt is the probability that a freely drifting molecule will suffer in the
interval ¢, r + dz an effective collision. The instants of state transitions of the molecule
divide the interval of observation {0, 7] into a random number v of subintervals of
motion and rest of duration z; and g;, respectively (f = 1, 2, ...) (Fig. 1). Now, the
main problem is to derive the distribution of the total time of motion t within the
interval [0, 7], i.e., of the sum

T=1, +..+17, ; 0<t<T . @

If the motion of the molecule were uniform with constant velocity v then its displace-
ment s after time 7 would be simply a random variable, s = vr. However, as the
motion is Brownian with drift, we have to take into consideration its property (ref. 5,
p- 98; ref. 6, p. 274) that if the time of motion is T = ¢, then the displacement s, is a
normaily distributed random variable with mean and variance being

s> =vt ;  vars, =2Dt ‘ ©)

Le. s, v;ill have the density

1 2ea
e(sl ) = ——- e s wria by ]
£6s10) VArDt : -

where.v is the drift velocity and D the diffusion coefficient of the protein molecule in
gel. However, in our model* the total time of mobility t is a random variable capable
of assuming any value from the interval (0, 7) with a probability density f7(7) (to be
derived later). Hence the density of displacement s is obtained by summing all the
densities g(s‘ ) multiplied by the corresponding probabilities f1(z), namely

T
g(s) = § S gts} o de ) ®
Q -

If many protein molecules start at time ¢ = 0 and each of them indepenkfentiy ex-
ecutes this kind of random walk (a necessary condition for this is that their concentra-
tion is low enough to prevent mutual interaction), then the density function g(s)

o T_;sing this simola model of diffusion we have obviousiy left out of consideration the existence of Teft
and right barriers, ie., both ends of the gel rod, which in our case usually have only negligible effects.
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- yields the concentration profile of the protein Zore for any given T. Exact calculation
of the distribution of t for arbitrary transition intensities 2 and g seems prohibitively
cumbersome. For this reason we shall treat two special cases of importarice: -

(A) 4 = p; this can be easily achieved experimentally by a suitable choice of
ligand concentration c. )

- (B) AT > LuT > 1, simultaneously. In other words, the mean waiting times
(zp and (o), j = 1, 2, ..., are small in comparison with the time of observation T.
Thxs means that the fate of the protein molecule during time T will consist of many
consecutive evenis-of complex formation and its decay. -

"~ Before proceeding further, a note on the physical interpretation of the transi-
tion intensities 4 and p should be made. We have found above that 4 = wx, where @
is the effective cross-section of the complex formation reaction and x is the collision
intensity, ie., the mean number of collisions with ligands per unit time which a
molecule suffers when drifting through the gel. The latter parameter is clearly linearly
dependent on the ligand concentration ¢, at least within some reasonable range, and
so also is 4. Therefore, following the custom in chemistry, we can write 2 = k;c¢
because 2 is in fact the rate of reaction M + L — ML. Consequently, we have u = &,
as this is the rate constant corresponding to reverse reaction ML - M + L. Likewise,
the association (equilibrium) constant is K = k,/k,.

(A) i = p,ie. k,c =k, Thiscasecan be treated exactly and the derivation of
the equations presented below is outlined in the Appendix (A). The probability den-
sity @, of the variable x = /T, 0 < x < 1, where 7 is defined by eqn. 4 is given by
the following expression, assuming that at ¢ = 0 the protein molecule was free:

b, (V) = iTe*T. LI2AT J/~(1 — 9 +

+ATe T Jx)(1 — x) -1 [T + /(1 — O]+ e T8 — x) (D

where I, and I, are modified Bessel functions of order 0 and !, respectively, defined by
the expansion

1 z\*
L@ = Z JETk + @ + 1)'(5) ®)

(see ref. 5, p. 57, and ref. 7, p. 195) for ¢ = 0 and ¢ = 1 and J is the Dirac function.
The last term in eqn. 7 takes into account the case when the molecule happens to be
still free at time ¢t = T without having suffered any effective collision. The required
density of z is obviously

1 t
Jrm (D) = T Om (?) )
for 0 < ¢ < T with the last term in eqn. 7 then readinge ™7 -8, (T — f). For small AT

(AT is the mean number of state transitions during 7), the density curve ¢, (x) is
slightly asymmetric, as

Iy, 1 — AT
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With AT increasing, the second term on the right vanishes as well as the effect of
discontinuity at t = 7. Simultaneously, the variable t tends asymptotically to nor-
mality so that we can consider t as normally distributed with mean and variance

D=3 var t = T/(44) (10)

The approximation of fr ,,(f) by a Gaussian curve with m = z 3T and 62 = T/(44)is
good enough even for moderate values of AT, as can be seen in Fig. 3.
So far we have assumed that at ¢ = 0 the protein molecule is in a state of

mobility (for that reason we used the subscript m in symbols ¢, and f7 ). If the
molecule is initially bound to a ligand, then the density corresponding to eqn. 7 is

Sy(x) = ATe™T . I, [2iT /x(1 — )] +
+ITe—AT\/(l - I)/’C 11 [2/T+ x(1 — x)] + 3"17.5(0) (ll)

and
fl' b( ) N ! ¥y 12

corresponding to eqn. 8; the subscript b represenis “bound”. The distribution of the
displacement s (the profile of the zone) is given by eqn. 6, where we insert 9 or 12 for
[+ () as the case may be. However, in practical applications we frequently find that
diffusion is negligible compared with fluctuations arising from the intermittent
random walk of the molecule. This will happen for small AT. In such a case the
motion of the molecule can be considered as uniform with velocity v and the displace-
ment is simply the variable s = rr. Then the corresponding density is

3(s) = ‘l‘fr (%) (13)

Ifat 7 = O we start with a proportion y of molecules in the state of mobility and (1 —
7) molecules in the bound state (0 < y < 1), the profile of the zone will be given by

=1 Nra -, > 14
&) = ;| ¥ra(g) + 1 = Dfray (14)

Especially if before switching on the voltage equilibrium is allowed to establish as
determined by rate constants £; and X,, we shall have

Kefrm (-;}) + fra (%)
(15)

d+ Kor

() =

where K = k,/k,

If diffusion cannot be neglected then computation of functions 13, 14 and 15
requires numerical integration in accordance with eqn. 6. .

(B) AT and uT both large. This case is described by the followmo apprmumate
equations derived in the Appendix (B).

> = pTIG + 1) = T/ + Ko) I a6
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var T = ZApTi( + p)® = 2KP Tk, + Ko)’l = 2KcTik,(1 + RK)3(T)

Taking into account the Brownian motion we obtain finally for displacement s

(s)i= D{(‘E) = ouT/(2 + ) = To/(1 + Kc) @18)

vars = 2D <) + v? var v = 2DuT/(A + p) + 2ipTo*[(A + p)® = 2DT)(1 +
+ Koy + Kol Tk, (1 + Ko’l = 2DT/(1 + Ke) + 2KeTo?[lk,(1 + Ko’} (19)

The term v* var t represents the variance component resulting from the intermittent
motion of the molecule. Excluding the extreme case of 4/g either very large or very
close to zero (cases of no practical interest in affinity electrophoresis; under such
conditions either extremely high or extremely small retardation of the protein in
affinity gel would be observed; in experiments aimed at evaluation of K the value of
A/u should be approximately 1 < A/p < 5, the probability density of z is unimodal
and, within the limits of practically required accuracy, it may be approximated by
normal density with mean m and variance s~ given by eqns. 16 and 17. Putting 2 =
we obtain the same {z) and var t as given by egn. 10. In case B it is irrelevant whether
at time ¢ = Q the molecule is free or bound to a ligand. If diffusion is negligible, we can
take s as approximately normally distributed with mean and variance

(S =0) = To)(1 + K¢)  vars = v° var t = 2(Kev)® Tk, (1 + Ko)’]

as obviously derived from egns. 16 and 17.

If, on the other hand, the diffusion is predominant with respect to fluctuations
due to intermittent behaviour of the molecule, i.e., if var 7 = 0, we can take s as
approximately normal with mean and variance

> =0{t) = Tr)(l + Ko) var s = 2D (z) = 2DT/(1 + Kc)

RESULTS AND DISCUSSION

Effects of kinetics on the interacting protein zone profile: general exact solutions
One of the basic assumptions used so far in most studies employing affinity
electrophoresis was that the kinetics of formation and dissociation of the protein-
ligand complex can be considered very fast. This assumption implies that during the
entire time of the electrophoretic experiment (7) each protein molecule enters many
times into the complex, which again rapidly dissociates; in other words, the half-life
t,,, of the complex is much shorter than 7. Under such conditions the position of the
centic of the zone of the interacting protein in the affinity gel bears a simple re-
lationship to the concentration of the immobilized ligand and to the dissociation
constant of the complex”? and the width of the zone is determined essentially by
diffusion. Because the protein spends a fraction of the total time in the non-diffusible
complex, the diffusion broadening of the zone in an affinity gel is less than that in a
control (non-interacting) gel, and characteristic “‘sharpening’ of the interacting zones
is observed. The degree of this sharpening (in relation to the control gel) is again
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Fig. 2. Schematic comparison of the results of affinity electrophoresis in the case of very rapid kinetics and
in the general casc of slow kinetics. Abscissa, distance from the start; ordinate, protein concentration.
Curve 1, concentration profile of the zone in control (non-interacting) gel. Curve 2, profile of the zone in an
affinity gel in the case of very rapid kinetics. The width of the peak is determined predominantly by
diffusion; it is less than the widtk of peak 1 because of the limited time spent in the free diffusable
state. The value of s is given by sj{s, — 5} = 1/(&c). Curve 3, as curve 2 but representing the general case of
slow kinatics. Note that the exact determination of the position and width of the zonc is difficult because of
asymmetry and broadening caused by kinetic effects.
Fig. 3. Profiles of the zones of a ligand-binding protein in an affinity gel as calculated from equs. 7 and 9.
Abscissz, distance from the start; ordinate, protein concentration. In all cases the association (equilibrium)
constant of the hypothetical complex is X = 10%1 mol“., c=10"3M, T = 5000sec, v = 10" 3cmsec™ L.
Thc rate constants of complex dissociation were k; = 2-1073,4-1073, 10"% and 2-10™* sec™ ! for curves
1, 2, 3 and 4, respectively. These values correspond to 100 20, 5 and 1 state transitions (free +» bound) of an
average protein molecule during the entire time of the experiment. The half-width of the zone in the ideal
case of very rapid kinetics (X, — o) would be ca. 0.7 mm under otherwise identical conditions. The vertical
heavy bar at the right-hand end of curve 4 denotes schematically the fraction of molecules migrating
unretarded, i.e., the molecules that did not suffer any productive collision with immobilized ligand during
the cntire time of the experiment. This fraction is negligibly small in the cases represented by curves 1-3.

simply related to the dissociation constant of the complex and concentration of the
immobilized ligand>.

In this study we have found quantiiative relationships describing the effects
expected in the case of non-negligible kinetic limitations of the complex formation
and dissociation reactions. The essential result is that the kinetics of these reactions
determine the width and generally the form of profile of the zone of the interacting
protein in the affinity gel. This basic difference between the situation under the con-
diticns of very rapid klnencs and in thc case of slow kinetics is shown schematically in
Fig 2

The general relationship apphcable for the exact calculanon of the profile of an
interacting zone in the affinity gel is eqn. 6. As stated above, solution of this equation
in the general case would be extremely difficult and therefore two simpler equations
were derived that describe two special cases.

If k,c = k,, iie., Kc = 1 (which can always bc easily achieved by sclecting an
appropriate ¢; in the ideal case of.very rapid kinetics this condition produces a 567,
retardation of the protein in the affinity-gel compared with the control gel, which is
just optimal tetardation for the determination of K), the zone profiles can be calcu-
lated exactly for any T usmg equs.. 7. and 9. The results obtained using eqn. 9 are
showo i Figs. Famd 4 -

Fig. 3 demonstrates the. dependence of the zone profile on the kmetxc parame-



AFFINITY ELECTROPHORESIS —THEORY 279

Fig 4. Profile of the zone of a ligand-binding protein in an affinity gel for varions observation times (i.e.,
“development™ of the profile during the experiment) as calculated from eqns. 7 and 9. Abscissa, distance
from the start; ordinate, protein concentration. The hypothetical system is characterized by the following
parameters: k,c = k, = 4 = 3-1073sec™ !, p = 1073 cm sec™ L. The observation times are T = 500, 1000,
2000, 4000 and 6000 sec for curves 1, 2, 3, 4 and 3, respectively. The arrows indicate the position of the centre
of the zone in a control (non-interacting) gel for corresponding 7. Vertical heavy bars at the right-hand
ends of curves 1-3: see legend to Fig. 3 for explanation.

ters, namely on the lifetime of the protein-immobilized ligand complex at constant X,
¢, T and v. Clearly, the longer the lifetime of the complex (i.e., the slower the dissoci-
ation reaction), the more “*blurred™ and asymmetric the zone is. Fig. 4 illustrates the
development of the zone profile during electrophoresis; the increase in the zone width
with time, the marked deviation of the position of the maximum from the “ideal” s =
is, value (which is observed in the case of rapid kinetics under otherwise identical
conditions) and the asymmetry of the zone especially at the beginning of the experi-
ment are-obvious. It is clear that the magnitude of the effects predicted by eqn. 9
depends basically on the half-life of the complexes in relation to T and v; in principle,
an appropriate decrease in v and increase in T should largely eliminate adverse effects
of slow kinetics on the width of interacting zones. However, v and T can be varied in
practice only in a limited range because of pronounced diffusion broadening of the
zones at very large 7.

Some typical examples

It is illustrative to consider examples of real protein-ligand systems and to
guess whether they can be considered to uadergo “rapid” or “‘slow’ kinetics under
typical conditions of affinity electrophoresis (Fig. 5). It is obvious that a typical
lectin-sugar complex has a very short half-life and thus the kinetic effects occurring in
affinity electrophoresis of such a lectin on an affinity gel containing immobilized sugar
can be neglected and the results can be used for estimation of equilibrium constants in
usual way (plotting s/(s, — s) vs. 1/c)*.

On the other hand, in cases of more stable high-affinity antibody-hapten com-
plexes, the half-lives of the complexes are comparable to T, the zones are blurred and

. _* The values of the rate constants of the protein-ligand interactions®® used in Fig. 5 must be taken
only as rough approximations because they were obtained from studies in free solution; the rate constants
of reactions with immobilized ligands may be different. We also neglect the effects of multiple sugar-
binding sites in the lectin moiecule; i.e., we deal here with a hypothetical monovalent lectin.
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Fig. 5. Exampies of the resuits of affinity electrophoresis expected for various ligand-binding proteins
(based cn eqns. 7 and 9). Curve 1, profile of the zone of a protein forming a complex characterized by K =
10* 1 mol~* on a gel containing immobilized ligand (¢ = 107* M); &k, = 10° 1 mol ™! sec™?, &k, = Isec™?
(values corresponding approxnnatclv to those found for the interaction of a lectin with a carbohydrate
ligand®). T = 5000 sec, v = 1073 cm sec™ . Curve 2, as curve | but for a protein forming a complex
chararcterized by X = 10'° 1 mol™?! on a gel containing nnmoblhzcd LEgand (c = 1071° M); &k, = 4-1071
mol~!sec™!, k. = 4-1073 sec™ 1. Curve 3, as curve 2 but for a protein forming 2 more stable complex (K
=2-10"1mol L &k, = 4- lO"'lmoI’l sec™l k&, = 2-10"*sec™ ). Inallcases T = 5000sec,r = 1073 cm
sec™ 1. The proteins are assumed to be applied as an extremely narrow zone. The values characterizing
curves 2 and 3 correspond approximately to the interaction of high-afiinity antibodies with corresponding
antigens or haptens®.

estimation of s is difficult. A large increase in T (and a concomitant decrease in v)
would be necessary to eliminate these adverse kinetic effects, which would be ac-
companied by unacceptable diffusion broadening of the zones.

Possibility of measurement of rate constants

These results have interesting experimental consequences as they suggest the
possibility of estimating the kinetic parameters of protein—immobilized ligand com-
plexation reactions. The rate constants should be determined from the zone profiles
obtained under suitable conditions (c, v, T), at least for sufficiently slow reactions (i.e.,
for relatively kinetically stable complexes with half-lives of approximately ¢,,, > 10
sec). For less stable complexes the use of more sophisticated instrumentation (making
possible, e.g., work at very high potentials, thus producing high v, continucus scan-
ning of the zone profile and very short observation times) would be necessary.
Although this measurement of rate constants should be possible generally under the
conditions assumed during the derivation of eqn. 9, experimentally it would be more
convenient to work under the conditions described as case B, i.e., egns. 18 and 19, and
to determine kinetic parameters from the half—WIdths of the symmetrical zones as
discussed in the following section.

Use of simple approximate eauatzons

AIthouch eqns. 7 and 9 permit the exact calculation of the zone profiles, the
solution requires numerical integration, preferably using a computer. However, as
shown in Figs. 3 and 4, the zone profile can be approximated by a _symmetrical
Gaussian curve for moderate values of AT and eqns. 18 and 19 can be applied for
calculation of {s)» and zone width, respectively. Eqn. 19 is simple and easily applicable
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to the rapid evaluation of kinetic effects on the zone width. The position of the
maximum is identical with that expected in an ideal case of very rapid kinetics and
eqgn. 18 is identicai with the original simple relationship used for calculation of ap-
parent K as introduced originally by Gerbrandy and Doorgeest!® and Takeo and
Nakamura®!. Eqn. 19 states that the zone width depends on two terms, the first being
diffusion determined and the second kinetic dependent. The latter term decreases with
increasing K, ¢, k, and k; and increases with time. It should be noted that equs. 18
and 19 are approximate and their accuracy increases as AT increases. For practical
purposes it is sufficiently exact for AT values higher than ca. 5 (Figs. 3 and 4). Under
these conditions the results obtained by using eqns. 9 and 19 are almost identical.
Eqgns. 18 and 19 cannot be used for an adequate description of the initial phases of an
electrophoretic experiment when AT is too low.

As stated above, eqn. 19 would be especially useful for the evaluation of the
rate constants from the results of affinity electrophoresis. The following approach to a
rough estimation of k; can be suggested. Let, e.g., the experimental conditions be
such that eqns. 18 and 19 can be used; let s, denote the displacement of the molecule
in a control gel and s the displacement in the affinity gel. If a value of ¢ is used such as
to yield s = 15, (f.e., K¢ = 1), then according to eqn. 19 we shall have

var 5o = 2DT
var s = DT + v3T/44

Assuming that v, ¢, T are known, k, is determined as follows:
2 = k;c = v’T{4(var s — var s,)

where var s and var s, will be determined from the corresponding half-widths of the
zones. Alternatively, a family of curves such as those in Figs. 35 can be generated on
a2 computer and compared for best fit with that experimentally found.

Alternative approach: electrophoresis starts after establishment of equilibrium

The experimental design of all cases discussed so far was such that, at the
beginning, the sample of protein molecules was on the upper surface of the gel rod
and, after switching on the electric field, they migrated at a constant rate into the gel.
Thus, at the beginning, all the protein molecules were in the free uncomplexed state
and the steady state in the migrating zone was gradually established. However, a
different approach is also possible, which is currently used in preparative affinity
chromatography: the proteins are left to enter the affinity gel, the permeation is
interrupted for a time sufficient for establishment of equilibrium and then permeation
starts again. Analogously, in an electrophoretic system the sample would be elec-
trophoresed into the uppermost part of the vertical gel (or applied on the surface of
the horizontal gel), then the voltage would be switched off, equilibrium established
and then electrophoresis continued. This case, i.e., when initially a fraction of protein
molecules is free and the remainder is bound in the complex (the proportion of the
bound and free molecules is determined by the values of K and c¢) is described by eqn.
15. With complexes with relatively long lifetimes (¢,,, > T) an lmportant result isto
be expected from eqn. 15, as shown schematically in Fig. 6.
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Fig. 6. Schematic representation of electrophoretic separation of complex-bound and free ligand-binding
protein molecules for complexes of different stability as predicted by eqn. 15. Protein was allowed to enter
the gel, the voltage was switched off and equilibrium was established (peak 1). After switching on the
voltage, the free (uncomplexed) protein molecules (peak 3) migrate with velocity r; the rate of complex
formarion during their migration through the affinity gel is very low as the condition k;¢ = k; » 1/T holds
for very stable compicxes. The fraction of protein molecules immobilized-in the complex (peak 2) remains
largely in its original position owing to verv slow complex dissociation. Thus, the ratic of peak 2 to
peak 3 can be used for calculation of K as it is very close to the bound/fice ratio at cquilibrium. In the case
of a less stable complex (k. < 1/7) no separation of free and bound protein molecules occurs and a single
zone is observed (peak 4). ’

As a result of slow complex decay, the separation of free and bound protein
molecules will occur, two zones will be formed, and artificial “"heterogeneity”” will
be observed. This phenomenon might be partly responsible for some instances of
apparent glycoprotein heterogeneity as detected by affinity electrophoresis in agarose
gels containing incorporated lectins!?-!3, and it is also the basis of several variants of
affinity electrophoresis employing separation of bound and free fractions of anti-
bodies for the determination of ethbrmm constants of their complexes with anti-
gens!®15,

It should be stressed again that this approach for determining dissociation
coustants is applicable only for complexes with very long lifetimes; for rapidly decay-
ing complexes the results of affinity electrophoresis should be practically identical
whether all protein molecules are initially free or the electrophoresis starts just after
establishment of equilibrium.

Analagies with affinity chromatography and other techniques

It seems likely that kinetic imitations analogous to those examined in this
study are the reason for pronounced broadening of the zones of ligand-binding pro-
teins as observed in quantitative affinity chromatography*®-*”. The occurrence of this
phenomenon in affinity chromatographic systems is at conspicuous variance with the
results of affinity electrophoresis, where such broadening is usuaily not observed (at
least in the relatively rapid reactions studied by this method so far). This difference is
_probably due to the major effects of an additional rate-limiting mechanism occurring
in the chromatographic: systems, i.e., diffusion of the protenn from the free liquid
phase to gel beads and back }

Denizot and Delaage®® analyced theoreu"ally the effects of the kinetics of | pro-
tein—immobilized ligand interactions based on the results of quantitative affinity chro-
matograpby. They also predicted zone broadening and asymmetry as a resuit of
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relatively slow kinetics and the possibility of measuring rate constants from the re-
sults of quantitative affinity chromatography, and they also noted the complications
caused by hydrodynamic peculiarities of the chromatographic systems. =~

The principle of affinity electrophoresis is very similar to that of electrophoresis
in ion-exchange media'®22. In this method, the rate of movement of, e.g., cations
through a column of a cation-exchanger or cation-exchange paper in an electric field
depends both on the ionic mobility and the affinity of the ion to the cation-exchange
resin. It can be used, e.g., for an efficient separation of inorganic ions?3. The theory of
this method has also been published?®. Interestingly, zone spreading was observed
experimentally in this technique and it was assumed to be primarily the result of
inhomogeneities of the 1on-exchange medium; the effects of the kinetics of the ion—
matrix interaction were not considered?°.

CONCLUSION

The results of this study indicate that kinetic effects are of great importance for
an adequate theoretical description and the practical applicability of affinity elec-
trophoresis. We found that kinetic effects are negligible when affinity electrophoresis
is used for the determination of dissociation constants of relatively short-lived pro-
tein-ligand complexes (approximately ¢;,, < 10 sec under normally used experi-
mental conditions), i.e., in most practically encountered cases. We have also demon-
strated the possibility of measuring rate coastants by affinity electrophoresis, at least
with relatively long-lived protein-ligand complexes. The simplicity of the systems
used in this technique (in comparison with chromatographic systems) should be ad-
vantageous for its application in studies on the mechanisms of interaction of proteins
or other biological macromolecules with immobilized ligands, including kinetic
studies in such systems.

Gur results are valid for the model of the interaction of a monovalent protein
with an immobilized ligand. We have not dealt with more complicated cases of bi- or
multivalent proteins or systems that contain, in addition to immobilized ligand, some
mobile (free) ligand molecules. However, the approaches used and the results ob-
tained should also be applicable as a basis for a theoretical description of more
complicated models.

APPENDIX

Here we give an outline of the derivation of the equations presented in the
earlier sections. In doing so we shall need some basic facts about the exponential
distribution and those related to it, and these can most conveniently be found in
standard books®-S.

(A) A =p

The process of state transitions in this instance is a Poisson process with transi-
tion intensity 4. Under the condition that the number of transitions in the interval of
observation (0, T) is n, n > 0, the transition instants £y, -.., t, partition the interval
(0, 7) into n + 1 disjoint subintervals of lengthsu, = ¢, ..., u, =1, — l,_1, Upsy =
T — t, The joint density of u;, ..., u, is A

g(ys---, ug) = nYT" (20)
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Fig. 7. Examples of partition of the interval of observation [0, 7] into subintervals of motion and rest by
(a) an odd number (n = 2k + 1 = 5) and (b) an even number (7 = 2k = 6) of transition occurrences
assumning that at time 7 = O the molecule is free. Intervals of motion are drawn as heavy lines.

inthedomain0.< u, < ... <y, < T. The sum of the first rintervals u, + ... + u,
r < n, has the density gwen by the beta distribution generalized to the mterval [0, 71,
ie..

. n! A AL |

Ors =& = Dln — D! (7‘) (l B ?) ‘T @1

(ref. 5, pp. 73-75; ref. 6, pp. 239-241). As the density 20 is invariant under any
permutation of variables u,,..., u,, the beta density b,, holds for the sum of any
selection of r variables out of u,, ..., u,. We shall use this fact in the sequel. Assuming
that at t = 0 the molecule is free, we now wish to find the sum of all the subintervals
of motion contained in [0, 7]. We have to consider separately three cases according to
whether the number of state transitions in (0, 7) is odd, even or zero.

(@) n = 2k + I; k = 1,2,... From Fig. 7a (intervals of motion are drawn with
heavy lines) we immediately see that the total duration of motion is

T = ul'fi" u3 + --;+ uz&+1

In accordance with what has been said above about the distribution of any selection
of subintervals, it follows that t has the density by 4, x4+ (2)-

(b) n = 2k; k = 1,2,.... In this case the last interval of motion is the (n + 1)th
interval which is cut off by instant t = T, as seen from Fig. 7b. However, we can use
the same procedure as in case (a) by applying it to subintervals of rest. Evidently

T=T—(u7+u_‘+-~-+112k)

and as u, + ... + uy has the density by 5 (2), then 7 has the deunsity bzu , () as

follows fmm eqn. 21.

. (c) n = 0. This means that the molecule drifted freely all the time 7, so that

simply T = 7. Formally, the cormpondmg density is the Dirac function (z — 7).
The densities of 7 just found are conditional densm&s given a fixed number of

state transitions in (0, 7). This number of transitions is a2 random variable, v, obey-

ing the Poisson law - -
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Denoting by fr.. (¢] n) the density of t given v = n, the unconditional density of t is
obtained by randomizing the parameter n, i.e.,

Jra() = g Pr(v = n) f{(t] n)

The right-hand side of this equation must, of course, be split into three terms with
respect to cases (a), (b) and (c) as explained above. This means that we shall have

x A 2k+1 o 2 Ty2k
fra® = 2 ék%i)—!-e-”-buﬂ,m(z)+ ) (("22! e by 1 (D)

k=1

+e* ot -1 (22

Substituting explicit expressions for the beta densities in accordance with eqn. 21 and
using the definition of the modified Bessel functions given by expansion 8, we arrive
after some algebra at eqn. 7, if we change the variable t to x = /7.

The expectation of a variable with beta density 21 is rT/(n + 1) (ref. 5, p. 49).

The unconditional expectation () is then given by an expression analogous to the
right-hand side of eqn. 22, if instead of the beta densities we insert the corresponding

expectations. -

The treatment of a molecule initially bound to a ligand proceeds along the
same lines and need not be given here.

Now we have to derive an approximate equation_for the density ¢,.(x) ex-
pressed by eqn. 7 when AT is large. This we shall accomplish by investigating the
asymptotic behaviour of a new variable

y=JUT(x—-Y ; — JiT <v< JAT (23)

In order to save space and avoid clumsy equations we put 27 = o2, so that v =
2a(x — 3). The density of the variable y is then

Lo, (.}
!ll(y)_i; ¢m(2a +:))

4

The corresponding explicit expression is obtained by substituting x = 2}_ + Linto
¢(x). Thus we obtain o
2 1 S
Y0) = oae (D) +[(x + p)(x — PP -doee™ 1, 2 4)

where

\ yz 1 ) ’
z = or'[l —(_.) 2 . o2 _%}.2 — O(x™?) ©5)
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is the argument in the Bessel functions that occur in ¢_(x).

With y held fixed and o increasing we can take advantage of the asymptotxc
formula for the Bessel function when z is large (ref. 7, p. 196):

1
I(-}~e’(2z~z Z; 9—91
Multiplying both sides of this asymptotic equivalence by 3 ac™", we obtain
. 1
Lae ¥ I(2) ~}ae™ ¥4 Qu2z)"2 7 : (26)

If now we put the expansion 24 of z into the right-hand side above and let &2 — oo, we
find

S 1 L
fae ™ .2r2)"7 - - -e”27 vy}

1
As at the same time the factor (& + y)/(2z — »)]? in eqn. 24 tends to 1, we conclude
from egns. 24, 26 and 27 that

1
.a~27

Wy)~\/2—7;

Consequently, the variable y is asymptotically normal with mean 0 and variance 1 for
iarge values of 2 =-AT. Revertmg to the original variable T = x7, it follows from
eqn_ 23 that

- T
t—y/4).+ =T

Thus for large AT the variable 7 is approximately normal with mean
L =1T

and variance

var ¢ = T/4i i ' : -
or the corresponding standard deviation' -

o = /T4 ‘
W"xth AT increasing the factorré" in the Dirac functions 7m eqos. 7 and 11 tends to
zero. Consequently, the normal approximation just found applies equally well to

density &s(x), as is to be expected, as for large AT it is imimaterial whether attimet =
0 the :nolecule was free or bound to a ngand. : .-
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‘(3) iz ;t,both )ItmduTlarge o - :
". We restrict our considerations to an appmxlmate treatment of the problem by
,determmmg the mean and vanance of the ratio

: when r is xarge. The vanable b expr&cs&s the fraction of time the protein molecule
spends in mobile state on condition that the number of dlsengagements from ligands,
i.e., of resumptions of its mobility after a state of rest, is equal to r. To remove the

r r

summation symbols we shall write hereafter ©(r) = Y t; and x(r) = ) g; so that

n = (Nflx(r) + %)}

The two independent variables t(r) and y(r) have gamma distributions with parame-
ters, r, A and.r, u, respectively (ref. 5, p. 46), and their densities are not difficult to
calculate. We refrain from doing so here and refer to Fig. 8 instead, where four
examples of such a density are shown, namely for g = 54 and r = 3, 5, 10 and 20.
Obviously, the distribution tends rapidly towards symmetry and its spread decreases.
Hence we can use with confidence the following approximate equations for the mean
and variance of 7 as a function of two uncorrelated variables z(r), ¥(r):

<> = R + &) (28)
_(Y . on V.
varn = 61_(,_)) var t(r) + (61 (r)) var x{r) (29)

where both partial derivatives are to be understood at the respective points {z(r)> and
{x(r)) (see ref. 23, Ch. 2, §14). From the properties of thé gamma distribution (ref. 5,
p. 46) it follows that (e(r)) = r/4, ((r)) = rfu, vaxr ©(r) = r{A* and var x(r) = rfp>.
Executing the operations in eqns. 28 and 29 we find

0

Fig. 8. Density of the rafio of total time of mobility to waiting time for the rth effective collision; curves 1,
2, 3 and 4 bave been calculated for r = 3, 5, 10 and 20, respectively, and 54 = p They exhibit a rapld
apptoazh to symmcuy with increasing number of effective colhsmns.
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D =y + )

var 5 = 2Qu)*/rG + p)* ' " ‘ - (30$)

Now the process of cousecutive resumptions of mobility of the molecule is a renewal
process with waiting times t; + x;,/ = 1,2,..., and the number r of such occurrences
in the interval of observauou {0, 7] is a random variable. According io the central
limit theorem for renewal processes (ref. 5, p. 389), the number r for large AT, u7 will
be approximately normally distributed with expectation

r) = 4uT[G + p)
and variance

var r = inT (32 + 1D)/(2 + p)’

in comsequence of eqns. 3. The standard deviation of r divided by {r) is inversely

proportional to \/AT and thus with increasing 47 the relative variation of r dimin-
ishes. For large AT. uT we can put into eqn. 30 the mean {r) instead of r to obtain

varn = 2ipfT(2 + p)

To derive the approximate expressions for the total time of mobility 7, we write T =
Tn, to obtain finally -

& = T = uTl(G + p)

vart &~ T2 varn = 2pT/(G + p)?

For i = u we have {t) = 37 and var 7 = T/44, in agreement with eqns. 10.

SYMEOLS

D symbol for the mean value (expectation) of a random variable;

var... variance of a random variable (second-order central moment
often denoted by ¢°);

m mean

c. S standa.rd deviation } of normal (Gaussian) distribution;

g; waiting time between consecutive collisions;

%5 lifetime of a protein complex

K collision iatensity; -

u intensity of complex decay;

@ o - probability of interception by a hgand m a collision;
4 - © . interception intensity; - .

T _ time of umntcrmpted motion of a molecuxc,
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T S o :‘ time ofobsetvat;on,l. ! L
v - .~ number of mtervals of mobility w1th1n [0 Tj,

T= Y1 total time of mobihty w:thm {0 I], .

. 1 -
z - .- ..~ general variable for t!me, - R

- displacement of the molecule, i.e., dlstance travelled from the
starting point during time 7 at potential gradient V;

v drift velocity (m sec™!) of electrophoretic motion in gel due to
. the field applied;

D ’ coefficient of diffusion (m> sec™1);

Jr D, fr .0 density of total time of motion t for molecule initially bound or
) free, respectively;

Pl X), Pp(xX) deasity of the variable x = t/7; meaning of subscripts m and 5

as above;
2(s) density of distance s; zone profile curve,

equilibrium (association) constant of the univalent protein
ligand complex (I mol1);

ky rate constant of the protein—immobilized ligand complex forma-
tion reaction (1 mol ! sec™?);

ks rate constant of complex decay reaction (sec ~1);

t half-life of a complex.

Units of transition intensities k, ¢ and 4 are sec™! and of durations in sec.
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