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SUMMARY 

The kinetics of protein-immobilized ligand interactions during a&n&y elec- 
trophoresis are of great importance for the practical applicability of the method and 
for the interpretation of the results. Major theoretically predicted effects of the ki- 
netics of .(monovalent) protein-immobilized ligand complex formation and decay 
reactions during aBinity electrophoresis are (1) broadening of the protein zone and (2) 
anomalies at the beginning of the experiment before steady-state conditions .+e 
achieved. These phenomena are described quantitatively and experimental consequen- 
ces are predicted. Experimental procedures for minimizing the adverse effects of slow 
kinetics are suggested. AfEnity electrophoresis can be used safely for the measurement 
of the apparent dissociation constant of a protein-immobilized ligand complex (from 
the values of the mobilities of the ligand-binding protein on affinity gels) if the lifetime 
of the complex is much shorter than the total time of the electrophoretic experiment, 
i.e., under the conditions normally used approximately i,,= c LO sec. Quantitative 
analysi? of the zone proi% oc the protein in the al&&y gel can yield the kinetic 
-parameters (rate constants) of the protein-immobilized ligand interaction_ With very 
stable complexes (lifetime longer than the duration of the elcctrophoretic experiment) 
an alternative technique can be used for_ measurement of the dissociation constant, 
i_e_,.electr&phoretic separation of the complex-bound and free protein after establish- 
ment of eq@librium. The equations derived are used for prediction of the behaviour 
of several typical ligand-binding proteins (lectins, antibodies) with characteristic 
equilibrium and rate constants of-the complexation reaction with a ligand. 

WTRODUffION~ 

Afiinity el+trophoresis (fir a review, see ref. 1) can be used both for qualitative 
purposes (such as the detection and identification of iigand-binding proteins, and the 
detection of impurities in preparations of such binding proteins) and for quantitative 
evaluation of the strength of-protein-ligand interactions. So far most quautitative 
applications of a&&y electrophoresis (i-e., estimation of the dissociation constants 
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of proteit-&and complexes) were based on very simple equations relating the mobil- 
ity of a protein on an athnity gel to the dissociation constants of the protein-@and 
compiexes, implicitly assuming a number of simplifying conditions. However, the 
application of athnity electrophoresis for these qu&rtitative purposes obviously re- 
quires the development of a reiiable theory of the technique~quantitatively describing 
the effects of various factors that affect the process of protein-@and complex fotma- 
tion. The effects of a number of factors have been theoretically treated-in two previ- 
ous papers=_ 

One of the simp@ing assumptions used for deriving the relatively simple 
equations applicable for the evaluation of the dissociation constants of protein- 
ligand complexes by afEnity electrophoresis is that the rates of complex formation 
and dissociation reactions are very high so that kinetic effects are negligible and the 
situation in the protein zone moving through the affinity gel is very ciose to an equilib 
rium state. However, as aEinity electrophoresis is principally a non-equilibrium 
method, this assumption may not be always valid in practice. Therefore, it was of 
interest to evaluate the etEcts of the kinetics of the complex formation reaction on the 
results obtainable by this technique. The effects of kinetics were partially discussed (in 
addition to several other factors) in a previous paper’, but in that study an over- 
simplified model was used, the effects of kinetics on the distribution of protein mole- 
cules (i.e., the width of the band) not being considered_ 

In this paper we present a fuller description of this problem. The results ob- 
tained can be used to predict the kinetic limitations of the technique and to suggest 
conditions under which the comphcating kinetic effects can be eliminated; also, the 
possibility of measuring rate constants by aEnity electrophoresis is demonstrated. 

MODEL USED 

The characteristic features of the model used are as folIows. The medium used 
as an afEnity gel is a highly porous, macroscopically homogeneous geI containing im- 
mobihzed hgand mole&es (concentration c) covalently attached to the gel matrix_ 
The macromolecuiar gel-forming network has negligible volume so that there are no 
restrictions to free di&ion of protein moIecuIes within the gel; each point in the gel 
is accessible to a protein molecule_ Ah immobilized ligands are chemically equivalent 
and accessible tg interaction with the protein; thus, the effective concentration of the 
immobilized @and is identical with the total concentration c. The space distribution 
of @and molecnles is random (statistical). The medium forms a homogeneous block 
(e.g., a rod in a glass tube) which connects vertically two electrode vessels as usually 
used in vertical discelectrllphoresis apparatus. A single buffer is used throughout the 
system (i-e_, a continuous buffer system is employed)_ The sample is applied as a very 
narrow zone at the top of the gel; the molar concentration of the protein (a) in the 
sampie is much lower than c (a 4 c)_ The protein molecule (with diEusion coefficient 
0) possesses a single iigand-binding site. A potential gradient used is such that the 
rate ofelectrophoretic movement of the protein in a control (non-interacting) gel is u. 
E2ectroendosmosis of the gel is negligibly IoW and the tern_peratnre is constant_ 

Mathnaricai description of the model in the general case 
Let the protein mokzcuie be free (uncomplexed at time t = 0). After switching 
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on the ekctric field itexecutes Brownian motion for a certain time with drift velocity D 
in the direc@on of the line of force until a collision-with an immobilized ligand occurs. 
P$QW one of_ _&VO events may quf: either the molecUre is intercepted by the lipd 
with the result that an immobik complex is t‘ormed and the molecule comes to rest; or 
it may bounce off and continue drifting. The latter event may be repeated consecu- 
tively several times until the first event recurs. However, as the lifetime of the (im- 
mobile) complex is finite, the complex will decay after a certain time and the whole 
process will start anew. Thus, the complex formation results in retardation of the 
protein in an afEnity gel compared with a control gel. Generally, we wish to find the 
probability that the protein molecule will occur at a distance s from the start at time t 
= T, i.e., to determine the time-dependent distribution of protein molecules through- 
out the length of the gel under general conditions_ Such a probability distribution 
should yield the concentration profile of the protein zone at any tie (cf;, Fig. 2). In 
order to do so we have to start with some generally plausible assumptions that will 
enable us to describe mathematically the fate of one randomly selected molecule. 

Let ci be the waiting times between consecutive collisions, ;ci the lifetimes of 
protein complexes that the molecule forms (i,j = 1 ,2, . . .) and o the probability that 
a collision will bk effective, Le., will result in complex formation_ We assume that 5, 
and ;ci are mutually independent exponentially distribute4 random variables with 
probability densities 

& (f) = fee- 
> & (2) = pe-@ ’ ’ O (1) 

[It should be noted that the frequently used half-life of the complex is equal to (In 2)/p 
but for our purposes the parameter p is more convenient.] The instances of collision 
without and with interception divide the interval of observation [O, ZJ into sub- 
intervals of motion and rest as shown in Fig. 1 where the intervals of motion of the 
molecule are drawn with heavy lines. 

The probability o may be termed the effective cross-se&on for the complex 
formation reaction and is assumed to be constant. 

It is intuitively clear and can easily be shown by explicit argument that the 
waiting times ri between two consecutive eEective collisions are exponentially dis- 
tributed with the probability density 

Aj (t) = c3ise-"" (2) 

Fig 1_ Schema& representation of the fate of a protein molecule as a temporal sequence of cobions with 
and without interception, Intervals of motion of the molecule are drawn with heavy lines. FuIi circle, 
coWion with intcrccption; open circie, collision Gthout interception; vertical bar. dksociition of the 
complex. 



Using the language of stochastic processes, we can say that the fate‘ of the protein 
molecule is a simple~time-dependent process~ with two states (rest and motion) and 
the transition intensities li = ok: and p corresponding to transition.Cmotion + rest 
and rest + motion, respectively. From the properties of the exponential distribution 
it follows that for the mean and variance of waiting times the following reiationships 
hoid (ref 5,. p_ Q: 

(3) 

Hence, e.g., /.dt is the probability that a freely drifting molecule will suffer in the 
interval r; t i- dr an effective collision. The instants of state transitions of the molecule 
divide the interval of observation [O, I] into a random number v of subintervals of 
motion and rest of duration rj and xj, respectively (j = 1, 2, . ..) (Fig. 1). Now, the 
main problem is to dei-ive the distribution of the total time of motion T within the 
interval [O, TJ, Le., of the sum 

z = r1 t _.- + r, ; OGr=GT (4) 

If the motion of the molecule were uniform with constant velocity u then its dispIace- 
ment s after time T would be simply a random variable, s = UT. However, as the 
motion is Brownian with drift, we have to take into consideration its property (ref. 5, 
p_ 98; ref. 6, p. 274) that if the time of motion is 5 = t, then the displacement S, is a 
normally distributed random variable with mean and variance being 

I <s*> 7 ut ; \iar s, = z@ (5) 

i.e. s, v& have the density 

wherev is the drift velocit3 and D the diffusion coefficient of the protein molecule in 
gel. However, in our model* the total time of mobi!ity T is a random variable capable 
of assuming any value from the interval (0, T) with a probability density&z) (to be 
derived later)_ Hence the density of displacement s is obtained by summing -all tile 
densities g(si t) multiplied by the corresponding probabilities_&(t), namely 

Emany protein moiecuies start at time t = 0 and each of them indepeudentiy ex- 
ecutes this &nd of random walk (a necessaq condition for this is that their concentra- 
tion is_ lo? enough to_ prevent mutual interaction), then the density fun&on g(s) 

_ .- 
_ 

_- 1. _: .- . . 

-. I = L&g t&5 siin$e r;lodel of@fusiiin we haye obtiousfy kft out of&msi&tition tfie exktence 0iTetft 
2nd right Lmrriers, k, both e&s of the gd rod, which in our case usually have only negligible e&cts. 



. yi&S the tincentration proiikof ghe protein zone for any given K-Exact e&ulation 
of-the distribution of z forarbitrary transi&on int6ties Rand ,U seems prohibitively 
cumbersome_ For &s reason we shall treat two speeiai ‘cases of importance: 

-. (A)-L = p; this can be easily achieved experimentally by a suitable choice of 
ligand concentration c_ 
.- . - (B) AT s l,pZ” *. I; simultaneously~ In other words, the mean waiting times 
<ri> and c;ci>, j = 1,2, -. . _, are small hi comparison with the time of observation T. 
This means that the fate of the protein molecule during time T wiIl consist of many 
consecutive eventsof complex formation and its decay. 

Before proceeding further, anote on the physical interpretation of the transi- 
tion intensities J_ and p should be made. We have found above that i. = OK, where o 
is the effective cross-section of the complex formation reaction and h: is the collision 
intensity, i.e., the mean number of collisions with Iigands per unit time which a 
molecule suffers when drifting through the gel. The latter parameter is clearly linearly 
dependent on the ligand concentration c, at least within some reasonable range, and 
so also is i.. Therefore, following the custom in chemistry, we can write i = k,c 
because L is in fact the rate of reaction M i- L + ML. Consequently, we have p = I&, 
as this is the rate constant corresponding to reverse reaction ML --, M t L_ Likewise, 
the association (equilibrium) constant is K = k,/kz_ 

(A) d = p, i.e., k,c = k2_ This case can be treated exactly and the derivation of 
the equations presented below is outlined in the Appendix (A). The probability den- 
sity 4, of the variable s = r/T. 0 c x < 1, where r is defined by eqn. 4 is given -by 
the following expression, assuming that at t = 0 the protein molecule was free: 

where I,, and I, are modified Eessel functions of order 0 and 1, respectively, defined by 
the expansion 

- . 

(see ref. 5, p. 57, and ref. 7, p_ 195) for e = 0 and e = I and 6 is the Dirac function. 
The last term in eqn. 7 takes into account the case when the molecule happens to be 
still free at time t = T without having suffered any effective collision. The required 
density of z is obviously 

for 0 -C t I T with the last term in eqn. 7 then reading emaT - b + (T - t). For small 1T 
(I;T is the mean number of state transitions during T), the density curve (P,(S) is 
slightly asymmetric, as 
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With X4? increasing, the second term on the right vanishes as well as the effect of 
discontinuity at~t = T_ Simultaneously, the variable x tends asymptotically to nor- 
mality so that we can consider T as normally distributed with mean and variance 

<r> = fr. var 7 = T/(4/) (10) 

The approximation off,(t) by a Gaussi+ curve with m = ST and 2 = T/(4i) is 
good enough even for moderate v&es of AT, as can be seen in Fig. 3. 

So far we have assumed that at t = 0 the protein molecule is in a state of 
mobility (for that reason we used the subscript m in symbols #, andf,$). If the 
mokcule is initidly bound to a l&and, then the density corresponding to eqn_ 7 is 

&(_u) = iTemiT - 1*[2xJ~+ 

-i-KTemiTJw - iI [2RT + JZi-Gjj + es’= - 8(O) (111 

and 

corresponding to eqn.. 8; the subscript b represents “bound”. The distribution of the 
displacement s (the profile of the zone) is given by eqn. 6, where we insert 9 or 12 for 
_/,(z> as the case may be. However, in practical applications we frequently. find that 
diffusion is negligible compared with fluctuations arising from the intermittent 
random walk of the molecule_ This will happen for small %T. In such a case the 
motion of the molecule can be considered as uniform with velocity t‘ and the displace- 
ment is simply the variable s = zx. Then the corresponding density is 

zw = $(;) (13) 

If at t = 0 we start with a proportion y of molecules in the state of mobility and (I - 
i;) molecules in the bound state (0 < 7 c l), the profile of the zone will be given by 

(14) 

Especially if before switching on the voltage equilibrium is allowed to establish as 
determined by rate constants k, and k2, we shall have 

s(s) _ efk.,(~) +I&(:) - 
(1 + Kc) c 

(13 

where K = k,/kz. 
- If diI%sion cannot be neglected, then computation of functions 13,14 and 15 

&quires numerical integation in accordance w&h eqn. 6. 
(B) i.T~iznd/?both hge. This case is de&&e8 by the followin; approrcimate 

equations derived in the Appendix (B). 
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var r = tipT/(% f p)3 = Z(Kc)ZTfik;(L f K#] = 2KcT/[k,(L f Kc)q(17) 

Taking into agount the Brown&n motion we obtajn finally for displacement s 

<s> = 91 <z> = u.uT/(% c &!l) = Tuj(l t Kc) w 

var s = 20 <r> i- z? var T = 2D.uT/(A f .u) f 2&Tti/(E, + p)’ = 2DT/(l f 

f Kc)-~-+_ -2(~c&T,4~r(l t &.)‘I = 2DT/(l f Kc) t 2KcTo’/[k,(l --f Kc)~] (19) 

The term t? var r represents the variance component ~resulting from the intermittent 
motion of the molecule. Excluding the extreme case of A/p either very large or very 
close to zero (cases of no practical interest in affinity ekctrophoresis; under such 
conditions either extremely high or extremely small retardation of the protein in 
afhnity gel would be observed; in experiments aimed at evaluation of K the value of 
L/p should be approximately 1 c A/p -C 5, the probability density of r is unimodal 
and, witbin the limits of practically required accuracy, it may be approximated by 
normal density with mean M and variance C? given by eqns. 16 and 17. Putting 2 = p 
we obtain the same <r> and var r as given by eqn. 10. in case B it is irrelevant whether 
attimet = 0 the molecule is free or bound to a ligand. Jfdiffusion is negligible, we can 
take s as approximately normally distributed with mean and variance 

<s> = 0 <r> = Tu/( 1 -I- Kc) var s = Oz var r = 2(Kcc)’ T/[k, (1 f Kc)~] 

as obviously derived from eqns. 16 and 17. 
If, on the other hand, the diffusion is predominant with respect to fluctuations 

due to intermittent behaviour of the molecule, i.e., if var r x 0, we can take s as 
approximately normal with mean and variance 

<s> = u <r> = TV/( 1 f Kc) var s = 20 <r> = 2DT/(l i- Kc) 

RESULTS AND DISCUSSION 

Effects of kinetics on the interacting protein zone pro$le: general exact solutions 
One of the basic assumptions used so far in most studies employing ahinity 

electrophoresis was tbat the kinetics of formation and dissociation of the protein- 
ligand complex can he considered very fast. This assumption implies that during the 
entire time of the electrophoretic experiment (I) each protein molecule enters many 
times into the complex, which again rapidly dissociates; in other words, the half-life 
tllz of the complex is much shorter than T. Under such conditions the position of the 
ccntre of the zone of the interacting protein in the &in&y gel bears a simple re- 
lationship to the concentration of the immobilized ligand and to the dissociation 
constant of the complex’ and the width of the zone is determined essentially by 
ditftrsion. Because the protein spends a fraction of the total time in *&e non-diffusible 
complex, the-diffusion broadening of the zone in an ahinity gel is less than that in a 
control (non-interacting) gel, and characteristic “sharpening” of the interacting zones 
is observed_ The degree of this sharpening (in relation to the control gel) is again 
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Fig. 2 Schematic comparison of the results of aEnity ekctrophoresis in the case of very rapid kinetics and 
in the general cast of slow kinetics_ Abscissa, distance from the start; ordinate, protein concentration. 
Curve 1, concentration profile of the zone in control (non-interacting) gel. Curve 2, protile of the zone in an 
r&i&y ~4 in the case of very rapid kinetics_ The width of the peak is determined predominantly by 
diffusion; it is less than the width of peak 1 because of the limited time spent in the free diEusable 
state. The value of s is given by sj(so - s) = Ij(Kc). Cume 3, as curve 2 but representing the general case of 
slow hinetics Note that the exact dete rminanon of the position and width of the zone & difficult because of 
asymmetry and broadening caused by kinetic effects. 

Fig 3. Pro&s of the zones of a @and-binding protein in an aEinity gel as calculated from eqns. 7 and 9. 
Abzxiss& distaixe from the start; ordinate. protein concentration_ In ah cases the association (equilibrium) 

constant of the hypothetical complex is K = IO8 1 mol-‘. c = IO-* My T = 5OW set, t- = 10e3 cm xc-‘. 
The .ate constants of complex dissociation were k2 = 2 - IO-‘, J- IO--‘, IOm3 and 2- IO-‘see-r for cutwes 

I, 2,3 and 4, rcqxctively. These values correspond to 100,20,5 and I state transitions (free ++ bound) of an 
average protein molecuie duriig the entire time of the experiment. The half-width of the zone in the ideal 
case of very rapid kinetics. (kr --, 5) wou!d be co. 0.7 mm under otherwise identical conditions_ The vertical 
heavy bar at the right-band end of curve 4 denotes schematically the fraction of molecules migrating 
unretarded, i.e., the mokuks that did not s*uffer any productive collision with immobii li_gmd during 
the entire time of the eqxriment. This fraction is negligibly small in the cases represented by curves 1-3. 

simply related to the dissociation constant of the complex and concentration of the 

immobilized iigand’. 
In this study we have found quantitative relationships describing the effects 

expected in the case of non-negligible kinetic limitations of the complex formation 
and dissociation reactions_ The essential result is that the kinetics of these reactions 
determine the width and generahy the form of profile of the zone of the interacting 
protein in the a&tity gel_ This basic diEerence between the situation under the con- 
ditions of very rapid kinetics and in the case of slow kinetics is shown schematically in 
Fig 2_ 

The general relationship applicable for the exact calculation of the profile of an 
intCracti=lg zone in the afiinity gel is eqn. 6. As stated above, soiution of this equation 
in *&e general case would he extremely difficult and therefore two simpler equations 
were derived-that describe two special cases. 

Ekic = k, i-e., ii% = 1 (which can aiways be easily achieved by selecting an 
appropriate c; in the ideal case of-very rapid kinetics this condition produces a 50°k 
retardation of the protein in the a&n@-g&compared with the control gel, which is 
just optimal retardation for the-determination of-K), the zone profiles can be calcu- 
la&d exactly for any .T using eqns. irand 9_ Theresuhs obtained using eqt~ 9 are 
M&m 34&-‘ ~-: em - -~_ _ . 

Fig_.-3 demonstrates the-dependence of-the zone profile on the kinetic parame- 
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Fig. 4. Proiik of the zone of a l&and-binding protein in an a5nity gel for various observation times (i.e.. 
“development” of the proiik during the experiment) as calculated from cqns. 7 and 9. Abscissq distance 
from the start; ordinate. protein conax~tration. Tbe hypothetica! system is characterized by the folIowing 
parameters: k,c = x-2 = A = 3 - lo-’ set-‘. v = 10q3 cm set-‘. The observation times are T = 500.1000. 
2000.4OtM and 6000 set for curves 1.z3.1 and 5. respectively. The arrows indicate the position of the centre 
of the zone in a control (non-interacting) gel for correqonding T. Vertical heavy bars at the right-hand 
ends of curves 1-3: see legend to Fig. 3 for explanation. 

ters, namely on the lifetime of the protein-immobilized ligand complex at constant K, 
c, Tand u. Clearly, the longer the lifetime of the complex (i.e., the slower the dissoci- 
ation reaction), the more “blurred” and asymmetric the zone is_ Fig. 4 illustrates the 
development of the zone profile during electrophoresis; the increase in the zone width 
with time, the marked deviation of the position of the maximum from the “ideal” s = 
$so value (which is observed in the case of rapid kinetics under otherwise identical 
conditions) and the asymmetry of the zone especially at the beginning of the experi- 
ment are-obvious_ It is clear that the magnitude of the effects predicted by eqn. 9 
depends basically on the half-life of the complexes in relation to T and Y; in principle, 
an appropriate decrease in u and increase in Tshould largely eliminate adverse effects 
of slow kinetics on the width of interacting zones. However, u and T can be varied in 
practice only in a limited range because of pronounced diffusion broadening of the 
zones at very large T. 

Some typical examples 
It is illustrative to consider examples of real protein-ligand systems and to 

guess whether they can be considered to undergo “rapid” or “slow” kinetics under 
typical conditions of afIinity electrophoresis (Fig. 5). It is obvious that a typical 
lectin-sugar complex has a very short half-life and thus the kinetic effects occurring in 
afiinity electrophoresis of such a lectin on an aEinity gel containing immobilized sugar 
can be neglected and the results can be used for estimation of equilibrium constants in 
usual way (plotting &so - s) VS. l/c)*. 

On the other hand, in cases of more stable high-aflinity antibody-hapten com- 
plexes, the half-lives of the complexes are comparable to T, the zones are blurred and 

* The values of the rate constants of the protein-ligand interactionssg used in Fig_ 5 must be take= 
only as rough approximations because they were obtained from studies in free solution; the rate constants 
bf reactions with immobilized ligands may be different_ We also neglect the effects of mukiple sugar- 
binding sites in the &tin mokcuiq i.e., we deal here nith a hypothetical monovaknt k&in. 
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Fis 5. ISamp& of.tbe results of affinity electrophoiesis expected for various ligand-binding proteins 
(W CP eqns 7 and 9)_ Curve 1. proHe of the zone of a protein forming a comp!cx characterized by K = 
Iti 1 mol-’ on a gel containing immobii &and (c = IO-’ M); k, = Iti 1 mol-’ set-*, kz = 1 set-l 

(values corresponding approximar,dy to those found for the interaction of a lectin with a carbohydrate 
&and*) T = -SO0 sez, D = IO-’ e xc- I_ Cm-w 2, as curve I but for a protein forming a complex 
-r&d by K = IO”’ l_rnol-’ on a gel containing immobilized &and (c = 1O-‘o M); k, = 4 - IO’ 1 _ 
moi-’ set- ‘,k, = 4-lo-‘set-‘_ C- 3. as -e 2 but for a protein forming a more stable complex (K 
=2-10"lmol-',k, =4-1O’imoI~‘scc~‘.k~=2-lO~~scc -‘).Inallc2sesT=sQoOsec~r= io-‘an 
set-‘. The prote& are assumed to be applied as an estrunely narrow zone. Tbe v&es characterizing 
-2and3 wrrespond approximately to the intcraaion of high-aEnity zntihodies with corresponding 
and,cens or haptc&. 

estimation of s is dif&uIt. A large increase in T (and a concomitant decrease in D) 
would be necessary to eliminate these adverse kinetic effits, which would be ac- 
companied by unacceptabIe diffusion broadening of the zones. 

Possibility of measurement of rate constants 
These results have interesting experimental consequences as they su_ggest the 

possibility of estimating the kinetic parameters of protein-immobilized ligand com- 
plexation reactions. The rate constants should be determined from the zone profiles 
obtain& ulider suitabIe condi6ons (c, o, T), at Ieast for suf&cientIy slow reactions (i-e., 

for relatively kinetically stable complexes with half&es of appro.ximately tip > 10 
xc>_ For less stable complexes the use of more sophisticated instrumentation (making 
possible, e.g., work at very high potentials, thus producing high O, continuous scan- 
+ng of the z&e_ profiIe and very short observation times) would be necessary. 
Althou_@ thii measurement of rate constants should be p+sibIe generally under the 
conditions ‘assumed during the deriyation of eqn. 9, experimentally it would be more 
convenient to work under the conditions described as case B, Le., eqns. 18 and 19, and 
to de&mine kinetic parameters-from the half-widths of the symmetrical zones as 
discussed in the following section. 

~AIthough eqns_ 7 and 9 permit the exact c&ulation ofthe zone proI%Ies, the 
sotution requires numeri_cal integration, preferably using a computer. However, as 
show in Fig;_ 3 and $ $@ z&& ProHe can be appiotimated by a .symmetr%ai 
Gauss& curve for &ode+e v&&s of i.T and ea_ns.- 18 and 19 Can be ap$ied for 
caIcuIation of <s> and zone width, respectively. Eqn. 19 is simpIe and easiiy applicabb 
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tiO- the -rapid evaluation of kinetic effects on the zone width: The position of the 
maximum isidentical with that expected in an ideal case of very rapid kinetics and 
eqn. I8 iS identical with the original simple relationship used for calculation of ap- 
parent K as introduced originally by Gerbrandy and Doorgeest’* and Take and 
Nakamura”. Eqn. 19 states that the-zone width depends on two terms, the first being 
diffusion determined and the second kinetic dependent. The latter term decreases with 
increasing K, c, k2 and k, and increases with time. It should be noted that eqns. 18 
and 19 are approximate and their accuracy increases as 2.T increases. For practical 
purposes it is sufliciently exact for RT values higher than CQ. 5 (Figs. 3 and 4). Under 
these conditions the results obtained by using eqns. 9 and 19 are almost identical_ 
Eqns. 18 and 19 cannot be used for an adequate description of the initial phases of an 
electrophoretic experiment when i.T is too low. 

As stated above, eqn. 19 would be especially useful for the evaluation of the 
rate constants from the results of afbnity electrophoresis. The following approach to a 
rough estimation of k, can be suggested. Let, e.g., the experimental conditions be 
such that equs. 18 and 19 can be used; let s, denote the displacement of the molecule 
in a-control gel and s the displacement in the afllnity gel. If a value of c is used such as 
to yield s = &, (i.e., Kc = I), then according to eqn. 19 we shall have 

vars,=WT 

vars = DT + v’T/4i. 

Assuming that v, c, Tare known, k, is determined as follows: 

i, = k,c = v’TM(vars - var s,,) 

where var s and var s,, will be determined from the corresponding half-widths of the 
zones. Alternatively, a family of curves such as those in Figs. 3-5 can be generated on 
a computer and compared for best lit with that experimentally found. 

Alternative approach: electrophoresis starts afier establishnenr of equilibrium 

33e experimental design of all cases discussed so far was such that, at the 
beginning, the sample of protein molecules was on the upper surface of the gel rod 
and, after switching on the electric field, they migrated at a constant rate into the gel. 
Thus, at the beginning, all the protein molecules were in the free uncomplexed state 
and the steady state in the migrating zone was gradually established. However, a 
different approach is also possible, which is currently used in preparative afhnity 
chromatography: the proteins are left to enter the a&&y gel, the permeation is 
interrupted for a time sufficient for establishment of equilibrium and then permeation 
starts again. Analogously, in an electrophoretic system the sample would be elec- 
trophoresed into the uppermost part of the vertical gel (or applied on the surface of 
the horizontal gel), then the voltage would be switched ofI, equilibrium established 
2nd then electrophoresis continued_ This case, Le., when initially a fraction of protein 
molecules is free and the remainder is bound in the complex (the proportion of the 
bound and free molecules is determined by the values of K and c) is described by eqn. 
15. With complexes with relatively long lifetimes (itllZ > 7) an important result is to 
be expected from eqn. 15, as shown schematically in Fig. 6. 
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Fig_ 6. Schematic representation of ckctrophoretic separation of complex-bound and free &and-binding 
protein moleccles for complexes of different stability as predicted by eqn- 15. Protein was allow4 to enter 
the g&l, the voltage was switched off and equilibrium was est&lished Qxak 1). After saitching on the 
voltags the free (uncomplexed) piotei9 molecutes (peak 3) migrate w&b veIocity 0: the rate df complex 
formation during their migration through the aflinity gel is very low as the cundition k,c = kz Z-- l/T holds 
for very stable compiexes. The fraction of protein mokcuks immobilized-in the complex (peak 2) remains 
largeiy in its original position owing to very low compkx dissociation. Thus, the ratio of peak 2 to 
peak 3_can be used for calculation of Kas it is very close to the kxnmd/f&e ratio at equilibrium. In the case 
of a less stable compkx {k2 c 1iT) no separation of free and bound protein molecules occurs and a sin& 
zone is observed (pealr a)_ 

As a result of slow complex decay, the separation of free and bound protein 
moIecuIes will occur, two zones wih be formed, and artificial “heterogeneity” will 
be observed_ This phenomenon might be partly responsible for some instances of 
apparent glycoprotein heterogeneity as detected by affinity electrophoresis in agarose 
gels containing incorporated Iectins”*l 3Y and it is also the basis of several variants of 
aEinity electrophoresis employing separation of bound and free fractions of anti- 
bodies for the determination of equilibrium constants of their complexes with anti- 
gen,+‘s_ 

It sho=Ad be sn.=ssed again that this- approach for determining dissociation 
constants is applicable only for complexes with very long lifetimes; for rapidly decay- 
ing complexes the results of a&&y etectrophoresis should be practically identical 
whether alI protein molecules are initially free or the electrophoresis starts just after 
establishment of equiIibrium_ 

Anabgies with af$nity chromatography and other techniques 
It _ceems likely that kinetic limitations anaIogous to those examined in this 

study are the reason for pronounced broadening of the zones of &and-binding pro- 
teins as observed in quantitative afEnity~chromatography16*‘7. The occurrence of this 
phenomenon in at&&y chromatographic systems is at conspicuous variance with the 
results of affiniry electrophoresis, where such broadening is usuahy not observed (at 
least in the relatively rapid reactions studied by this method so far). This difference is 
.probably.due to the major effects of an additional rate-Limiting mechanism occurring 
in tht chromatographic: systems, Le., diffusion of the protein from the free liquid 
phasetogeIbeadsa.ndback . 

Denizot and Delaage” analysed theoreticahy the effects of the kinetics of pro- 
tein-$mmobihzed &and interactions based on the results of quantitative atIinity chro- 
matography- They also predicted zone broadening and asymmetry as a result of 
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relatively slow kinetics and the possibility of measuring rate constants from the re- 
sults of quantitative &in&y chromatography, and they also noted the complications 
caused by hydrodynamic peculiarities of thechromatographic systems. _ 1 

The principle of afhnity electrophoresis is very similar to that of electrophoresis 
in ion-exchange media1~2L. In this method, the rate of movement of, e.g., cations 
through a column of a cationexchanger or cationexchange paper in an electric field 
depends both on the ionic mobility and the a6nity of the ion to the cation-exchange 
resin. It can be used, e.g., for an eEicient separation of inorganic ionsz3. The theory of 
this method has also been published 2o Interestingly, zone spreading was observed . 
experimentally in this technique and it was assumed to be primarily the result of 
inhomogeneities of the ion-exchange medium; the effects of the kinetics of the ion- 
matrix interaction were not considered20. 

CONCLUSION 

The results of this study indicate that kinetic effects are of great importance for 
an adequate theoretical description and the practical applicability of afbnity elec- 
trophoresis. We found that kinetic effects are negligible when aEnity electrophoresis 
is used for the determination of dissociation constants of relatively short-lived pro- 
tein-ligand complexes (approximately ti12 -z 10 set under normally used experi- 
mental conditions), i.e., in most practically encountered cases. We have also demon- 
strated the possibility of measuring rate constants by aflinity electrophoresis,. at least 
with relatively long-lived prot-in-ligand complexes. The simplicity of the systems 
used in this technique (in comparison with chromatographic systems) should be ad- 
vantageous for its application in studies on the mechanisms of interaction of proteins 
or other biological macromolecules with immobilized ligamis, m&ding kinetic 
studies in such systems. 

Gur results are valid for the model of the interaction of a monovalent protein 
with an immobilized ligand. We have not dealt with more complicated cases of bi- or 
multivalent proteins or systems that contain, in addition to immobilized ligand, some 
mobile (free) ligand molecules_ However, the approaches used and the results ob- 
tained should also be applicable as a basis for a theoretical description of more 
complicated models. 

APPENDIX 

Here we give an outline of the derivation of the equations presented in the 
earlier sections_ In doing so we shall need some basic facts about the exponential 
distribution and those related to it, and these can most conveniently be found in 
standard bookssS6. 

(A) A = p 
The process of state transitions in this instance is a Poisson process with trausi- 

tion intensity A. Under the condition that the number of transitions in the interval of 
observation (0; 2-J is n, n > 0, the transition instants t,, ___, t, partition the interval 
(0, 2) into n + 1 disjoint subintervals of lengths z.+ = t,, . . ., u, = t,, - r,_ 1, u,, 1 = 
T- ?*. The joint density of ui, . . _, y is 
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Fig 7. Examples of partition of the interval of observation [0, ?j into subinter%aIs of motion and rest by 
(a)anoddnum-ber(n = 2k + I = 5)and(b)anevennumber(n = 2k = 6)oftransitionoccumw 
assuming that at time t = 0 the mokuk is fret. Intervals of motion are draw as heavy lines. 

inthedomainO.< u1 < . . . <u,, -C T.Thesumofthefirstrintervalsu, + .__ + u,, 
r ,( n, has the density given by the beta distribution generalized to the interval [0, TJ, 
i.e._ 

(ref. 5, pp. 7%75; ref. 6, pp_ 239-241). As the density 20 is invariant under any 
permutation of variables z+,___, y, the ‘beta density b, holds for the sum of any 
selection of r variables out of u,, _ _ _ , u,,_ We shall use this fact in the sequel. Assuming 
that at t = 0 the molecule is free, we now wish to tid the sum of ah the subintervals 
of motion contained in [0, ZJ. We have to consider separately three cases according to 
whether the number of state transitions in (0, ;r) is odd, even or zero. 

(a) ti = 2k + I; k =- 1,2,_.. From Fig. 7a (intervals of motion are drawn with 
heavy lines) we @nediateiy see that the total duration of motion is 

In accordance with what has been said above about the distribution of any selection 
of subintervals, it fohows that T has the density bZlsfl, k+l (t). 

(b) n =_2k;k = 1,2,.... In this case the last interval of motion is the (n + l)th 
interval which is cnt Hoff by instant r = T, as seen from Fig. 7b. However, we can use 
the same procedure as_& case (a) by applying it to subintervals of rest. Evidently 

f = T - (242 + u, + . . . + ua 

a&as u2 + .__ + u, has the density bxt (t), then ‘t has the density &k--l (t) as 
fohowsfromeqrl.2~~~ -_ _~ __ --- 

(c) n .= -0. This &e&S that *e molecule~drifte& f&iy all the time T, so that 
sim$y f = T, ~Fo~rni~y, the corresPqnding den&y is the pirac function~b(< - ;r). 

The densities of 5 j&t found are conditional ~densities given a fixed number of 
state transitions in (0, r)_ This number of transitions is a random variable,-+, obey- 
&g the Poisson law 



Denoting byf,,, (~1 n) the density of T given v = n, the unconditional density of r is 
obtained by ~randomizing the parameter it, Le., 

The right-hand side of this equation must, of course, be split into three terms with 
respect to cases (a), (b) and (c) as explained above. This means that we shall have 

f e-i’ w - I) (22) 

Substituting explicit expressions for the beta densities in accordance with eqn. 21 and 
using the definition of the modified Bessel functions given by expansion 8, we arrive 
after some algebra at eqn. 7, if we change the variable t to _V = t/T_ 

The expectation of a variable with beta density 21 is rT/(n f 1) (ref. 5, p. 49). 
Jhe unconditional expectation <r> is then given by an expression analogous to the 
right-hand side of eqn. 22, if instead of the beta densities we insert the corresponding 
expectations. 

The treatment of a molecule initially bound to a ligand proceeds along the 
same lines and need not be given here. 

Now we have to derive an approximate equation-for the density &&XT) ex- 
pressed by eqn. 7 when E.T is large. This we shall accomplish by investigating the 
asymptotic behaviour of a new variable 

y=JGF(x-$) - , -JiT?:<_v<flT (23) 

In order to save space and avoid clumsy equations we put i.T = 2, so that _V = 
2rx(... - s). The density of the variable y is then 

. 
The corresponding explicit expression is obtained by substituting _t~ = & +- Q into 
q&,(x). Thus we obtain 

(24) 
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is the argument in the Bessei functions that occur in I#+&). .- _. 
With y held f&d and 2 increasing we can take advantageof the asymptotic 

formula for the Bessel function when t is large (ref. 7, p. 196): 
_. 

I&} - e= (2x,_)-:; 
.- 

Q = 0,l 

Multiplying both sides of this asymptotic equivalence by p are-=*, we obtain 

If now we put the expansion 24 of z into the right-hand side above and kt K$ --* co, we 
kid 

9 ~c’+’ (27) 

As at the same time the factor [(a i ~)/(a - y$ in eqn. 24 tends to 1, we conclude 
from eqns. 24,26 and 27 that 

Consequently, the variable y is asymptotically normal with mean 0 and variance I for 
huge VahIes of d =-AT_ Reverting to the original variable r =~xT, it follows from 
eqn. 23 that 

Thus for large RT the variable I: is approximately normal with mean 

<T>=$T 

or the corresponding standard deviation. 

iv&l-x-in cresiig.&e factor dLu _ m thz D&c k_m&dns in eqns. 7 and I1 tends to 
zero- Cksequently, the normal apcroxkation just found applies equally well to 
den&y &(x);, aSis to be expected. as for large lZTit is immaterial whether at time i = 
(ftfie~ol~~~wasfreeorbq~~toa.ligand.. .--. _ _. _ 

_- .- 
_ _ 
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. when -i is .l&ge. -The &r%&le q expksses the f:a@on of time- th& pro& Aolecule 
spends ir; i&bile state oti tiondition that-&& ntier of disengagements from figands, 
i.e., of resumptions of its mobility after a &ate 6f rest, is eqtial to r. To remove the 

summation symbols we shall write hereafter T(T) = izj and x(r) = &o that 

The two independent variables r(r) and l(r) have gamma distributions with parame- 
ters, r, A -d-r, ~1, respectively (ref_ 5, p_ 46), and their densities are not difficult to 
calculate_ We refrain from doing so here and refer to Fig. 8 instead, where four 
examples of such a density are shown, namely for p = 5d and r = 3,5, 10 and 20. 
Obviously, the distribution tends rapidly towards symmetry and its spread decreases. 
Hence we can use with confidence the following approximate equations for the mean 
and variance of q as a function of two uncorrelated variables t(r), x(r): 

<rt> = <M>/(<~(d) + <x(r)>) (28) 

c’q 2 ( > var T(r) + 5 
2 

varq= Sr(r) c > G(r) 
var x(6 (29) 

where both partial derivatives are to be understood at the respective points <r(r)> and 
e(r)> (see ref. 23, Ch. 2, §14). From the properties of thk gamma distribution (ref. 5, 
p_ 46) it follows that <s(r)> = r/A, <x(r)> = r/p, var x(r) = r/A2 and var x(r) = r/p2. 
Executing the operations in eqns. 28 and 29 we find 

Fig- 8. Dendty Of the~raiioof totai’time ofmobility to waiting time for the rth e&ctive eoUision; curves 1. 

&3 ad 4 have beem ~~Iculated for t = 3,5. IO and 20, rcspectivdy, &d %- = w They exhibit a rapid 
approach to symmetry-with in cceasiug number of e&ctive coUisions_ 



in consequence of eqns. 3. The standard deviation of r divided by <r> is inversely 
proportiona! to fl and thus with increasing iT the relative variation of-r dimin- 
ishes. For large LT. pT we can put into eqn. 30 the mean <r> instead of r to obtain 

vartf x 2..$/T(E, + p)’ 

To derive the approximate expressions for the total time of mobility T, we write r = 
TV, to obtain fmahy 

<r> = T<q> = PTIG + 14 

-Jar 5 z TZ var q = 2$ij(i_ -I- & 

For i = p we have <r> = *T ax.16 va T = T/G, in agreement with eqns. IO. 

S-ts 

<---> symbol for the mean value {expectation) of a random variable; 
var... variance of a random variable (second-order central moment 

often denoted by tit); 
m mean 
d standard deviation 

half-width > 
of normal (Gaussian) distribution; 
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a> = PIG + PI 
-_ 

var f = 2&)‘jr(i. f p))’ _ (30) 

Now the process of consecutive resumptions of mobility of the molecule is a renewal 
process with waning times rj + ;ri,i = 1,2,. . . , and the number r of SUCE; OCCU~~~IMXZS 
in the interval of observation [0, IJ is a random variable. According to the central 
Limit theorem for renewal processe s (ref. 5, p. 389), the number r for large RT, ~Twill 
be approximately normally distributed with expectation 

<r> = r’.pT/(i. + p) 

and variance 

var r = i.pT (i2 + p2)/(i + p)’ 
. . 

waiting time bztween consecutive collisions; 
lifetime of a protein complex; 
collision intensity; - . 

intensity of complex d&y: 
, 

probability of interception by a l&and m a collision; 
intCXcepti&l i;l&n&y; _ _. 
time of uninterrupted motion of a molecuie; 



c . . generalvariablefo&e; - .-.:- . 
s _ displacemknf of the molecule, LE.,-~cldistance travel&d from the 

starting point during time T at potential gradient V; 
V drift veIocity (m set-‘) of ekctrophoretic motion in gel pue to 

D -- 
the field applied; 
coeflkient of diffusion (m2 see-I); 

r,,c0* fr.b(cI density of total time of motion z for molecule initially bound or 
free, respectively; 

AI 4%w density of the variable x = r/T; meaning of subscripts m and B 
as above; 

g(s) density of distance S; zone profile c&e; 
K equilibrium (association) constant of the univalent protein 

ligand complex (1 mol-I); 

ki rate constant of the protein-immobilized ligand complex forma- 
tion reaction (1 mol-’ see-‘); 

kZ rate constant of complex decay reaction (set- ‘); 

412 half-life of a complex. 
Units of transition intensities K, p and 2’. are set-’ and of durations in sec. 
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